tea-Tests

dents, and greater ambivalence among faculty, than statis-

tical inference. It’s difficult enough to get the calculations
straight; then deciding what you can infer from the printout is
like reading tea leaves in a room full of tasseographers: What-
ever one concludes, another will gainsay; and a deep sense of
hocus pocus pervades the whole affair. Psychologists can avoid
tea leaves, but, alas, they can't avoid t-tests.

Last semester a student dropped by my office to discuss her
data. She had failed to replicate a reliable result from the litera-
ture. Despite a healthy effect size, the small number of subjects
kept her p-value above the magic point-oh-five.| explained that
her results actually lent some support to the original claim, as
her relatively large effect was in the correct direction. She asked
“How much support?”and | held my fingers apart a little bit.

Forthwith she set about collecting reams of data and came
back with a highly significant p-value, pleased to be able to re-
ject the null hypothesis. | explained that she couldn’t do that. All
she was permitted to do was to act surprised at the deviation of
the data from what was expected under the null hypothesis. For
her p < .01, in fact, she was entitled to act quite surprised. She
acted quite surprised.

“If | can’t use statistics to draw conclusions about my hypoth-
esis” she sniffed between stifled sobs,“then why do you teach all
those statistics classes”? | explained that placebos can be very
effective; but only if we believe in them. Now, as a behaviorist, |
know that it takes rats only a couple of trials learn to avoid situa-
tions of pain or frustration. Students are smarter. She left.

Nickerson (2000) provides a none-too-brief breviary of the
many ways in which null hypothesis statistical tests (NHST) are
misunderstood. They are misunderstood both because they
involve inverse inference, a problematic endeavor, and also
because they are often mischaracterized in widely used texts
(Cohen, 1994). Nickerson’s authoritative sixty pages may lead
readers to suspect that there is something fundamentally wrong
with an inferential system that text-book writers can’t get right.
If the probability is much less than .05 that NHST will ever permit
conclusions concerning hypotheses, shouldn't we do more than
act surprised? Shouldn’t we reject NHST?

Inverse Inference Given a fair coin, what is the probability
of 8 heads in ten flips? That's direct inference. It is straightforward
to compute because its downhill, from a stipulated population
parameter (p(H) = .5) to a sample statistic. But now consider a
coin that landed heads in 8 out of 10 flips. What is the probabil-
ity that it is fair? That's inverse inference, and it is complicated
because it is uphill, from a measured statistic to a population pa-
rameter. Our answer must depend in part on whether the coin
came from our pocket, or from that of a guy trying to make a
bar-room bet with us; just how we flip it,and so on,and on.

Such considerations are called priors, or conditionals, or giv-
ens. If | tell you that it's a fair coin to start, those priors are all
taken care of, assumed, “given” by assertion. In the real world,
however, such assumptions eventually need justification, and

Few subjects in psychology elicit greater fear among stu-
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that justification involves inverse in-
ference:You need to go up before you
can go down.

Fisher-Neyman-Pearson  statis-
tics—what most of us use most of the
time—provide optimal estimates of
the probability of observing some sta-
tistic given an assumption, hypothesis,
or parameter (unbiased coins, null hy-
pothesis, p = .5). Call those probability
estimates p(d|a), with d the data, and
the conditional |a the given assump-
tions.Predicting d given a,p(d|a),is simple direct inference.Going
the inverse direction, to the probability of an assumption given
the data, p(ald), is possible, but only with yet more assumptions.
Bayes showed that we can make the conversion if we have esti-
mates of the baserates: the prior probability of the assumption
(that the coin was fair to start) and the prior probability of the
data (the probability of 8 heads in 10 flips of coins in general).

Neither of these priors is easy to establish.But without them,
as Fisher warned,“Such a test of significance does not authorize
us to make any statement about the hypothesis in question in
terms of mathematical probability” (Fisher, 1959, p. 35). That's
why my student couldn’t legitimately reject the null hypothesis,
given her data. | patiently explained this to her when she finally
stuck her head back in. She suggested that the prior probabil-
ity of her hypothesis was close to 1.0, but when | winced, she
left again, before | could explain that she also needed the prior
probability of her data.l haven't seen her lately.

Prior Priors Based on the work of Reverend Bayes and
Pierre-Simon Laplace (who attended a Benedictine priory
school), modern Bayesians have attempted to provide the nec-
essary prior probability distributions (see, e.g., Lee and Wagen-
makers, 2005). Because we often have little or no information
about the prior probability of a hypothesis, the problem of how
to express ignorance mathematically must be solved. Bayesians
have designed machinery that incorporates all the information
that we do have about the priors,and are otherwise mute.

But critics read their lips, arguing that there is no way that
they can be dumb enough. No sooner had Laplace harnessed
Bayes’ theorem for scientific analysis than George Boole cau-
tioned: “When the defect of data is supplied by hypothesis
[about the prior probabilities], the solution will, in general, vary
with the nature of the hypothesis assumed; ... | hope that a
question, second to none other in the theory of probabilities in
importance, will receive the careful attention it deserves” (Boole,
1854, as cited by Fisher, 1936, p. 248).

Despite its importance, and despite the careful attention it
has received, there is no agreement on the answer. Many have
attempted to untie this Gordian knot; most famously Fisher with
his patient but inconclusive work on“fiducial probabilities”Many
have cut the knot, but still couldn't get the old cart to move.Oth-
ers have turned their backs on the antiquity, fast in its temple,
and found a different wagon to ride.

Peter Killeen
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A Different Wagon We can evaluate research claims much
more directly by giving up any attempt to determine parameters
or to reject hypotheses.”Sure,” you smile,“give up our goals and
achieving them is no longer a problem. Isn't the whole purpose
of research to either prove things—or, after Popper, to disprove
them?” Whose goals? Rejecting null hypotheses has been a si-
rens’ call that has seduced too many scientists, to their delusion
and their field’s discomfiture.

Think of great advances in science, and few cases of NHST
come to mind.Pasteur did not reject the null hypothesis that life
can start spontaneously: He found maggots when the lids were
off and not when they were on. Could he have done a t-test,
would it have strengthened his claim? Darwin did not reject the
null hypothesis of speciation without variation and selection;
nor is it clear he ever could have.Watson and Crick did not reject
the Null Helix Hypothesis. Skinner did not train dogs to jump
through hoops significantly more often than chance.

Medical trials measure relative risk reduction; if negligible,
the procedure is not pursued, whether or not the improvement
is significant. When medical researchers take traditional statisti-
cal inference too seriously, they are as chagrined by its results as
we (loannidis, 2005).”Proof” originally meant a test that provides
evidence concerning a claim. All that data provide is evidence.
There are better ways to use that evidence than in doomed at-
tempts to prove or disprove hypotheses.We can use it to predict
whether our results will replicate.

Replication  Statisticians and scientists alike embrace
replicability as an inferential goal. As Cohen (1994) said, “Given
the problems of statistical induction, we must finally rely, as
have the older sciences, on replicability” (p. 1001). Predicting
replicability is easier than asserting or denying the truth of hy-
potheses. Getting on board this wagon is also easy, because we
need merely rebadge some of the basic statistics that we already
know. There are two steps to the process: Determine the sam-
pling distribution of replicates, and then define what we want
“replication”to mean.

1. Consider the left bell curve in the top of Figure 1.t is the
sampling distribution of a statistic under the null hypothesis.
Randomly select 5 Lipton® tea bags from a box, and weigh each.
Do the same with 5 Salada® tea bags. Plot the difference in aver-
age weights on the x-axis. Repeat this many times and the histo-
gram will look like the top right curve. Such sampling distribu-
tions form the basis of most inferential tests we use.The mean of
a sample, M, can be predicted from (or serve as an estimate of)
the mean of the population L. The variance of the sample, s can
be used to estimate the variance of the population, 6. Sampling
distributions are often normally distributed with mean m and
variance 6%/n.They are used to predict how often a statistic such
as a mean, a difference of means (M.-M_oran effect size (mean
difference divided by standard deviation: d, = (M, - M )/s), will
take a particular value.

NHST typically sets the expected value of these statistics to
zero (e.g.H;;: d, = (1, - uJ/o=0),0rno real difference in weight
of tea bags in our experiment, as in the left curve in Figure 1. If
experimental and control samples were chosen from the same
population this has to be true, because the population has a
single mean, L. But our measurement or experiment may have
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Figure 1.The left curve at top is the sampling distribution
for a statistic such as a mean or effect size (d) under the
null hypothesis. The traditional p-value is the area to the
right of the obtained statistic, d,, shown in black. Shift this
curve to it's most likely position (the observed statistic)
and doubile its variance (to account for the sampling er-
ror in the original plus that in the replicate) to create the
distribution expected for replications. The probability of
finding an effect of the same sign (p,,) is given by the
shaded area.The curve at bottom shows that as power or
effect size change, p and p_ change in complement.The
figure is reproduced from Killeen (2005a).

de facto created two populations with different means. Or we
may find that one dimension of our variable, here the brand of
tea, is correlated with another, such as bag weight. Such addi-
tional information may warrant the assertion that there is a“real”
difference between groups. If the statistic we derived from our
samples is sufficiently deviant from zero—if it falls into the dark
right tail of the sampling distribution in Figure 1--we conclude
that the data are surprisingly (“significantly”) deviant from what
is expected given the Null.

Given more, we could conclude more.We utilized data from
the experiment to estimate the standard deviation of the sam-
pling distribution; why not also use it to estimate the mean? In
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for a penny, in for a pound: Slide the distribution in Figure 1 to
the right, to center it over the measured effect size, d,. We can't
know that that is precisely where it belongs; d, will deviate ran-
domly around the true (population) effect size 8. Its deviation is
sampling error. Any attempted replication will also deviate from
d by its sampling error. And the replication statistic d, will de-
viate from the first value d, by the sum of those two errors. In
the long run (many original experiments, many replications), the
distribution of replication attempts will be centered on & with a
variance twice that of the observed data. This is shown by the
bell curve on the right of Figure 1,centered over our best current
estimate of 9, d7 .That curve is the “posterior (after the first mea-
surement) predictive distribution” It is our best guess of where,
and with what probability, the statistics from replications of our
experiment will fall.

Just as our evaluation of the fairness of the coin depends on
whose pocket it came from, our evaluation of a scientific claim
will depend on everything we know about it. But everyone will
know different things about any phenomenon, and as soon as
that subjective prior knowledge enters the picture, probabilities
themselves become subjective—a function of both the data
and who is answering the question.This is, after all, why people
bet on horses—and on anything else that moves—despite how
many data are already public: Each believes that their own sub-
jective priors are better than the opponents. But we may give
data a fair shake by assuming that we know nothing about the
phenomenon a priori, to let the data speak for themselves. This
means using uninformative priors that wash out of our answer as
soon as we have collected a few data.

2.The second step is to decide on what we mean by rep-
licate. How close do we have to come? Most often the claim
that wants testing is that a manipulation had an effect, or that
a relationship exists between two variables. Suppose an original
experiment found an effect size of 0.5, which might have arisen
from a difference of 1.0 between mean scores of samples whose
standard deviation averaged 2.0. The investigator claimed that
her manipulation was effective. A replication finding an effect
size of 0.4 would provide support for that claim. Indeed, a rep-
lication finding an effect size of 0.2, supports the original claim
even if it does not achieve traditional statistical significance. It
provides weak evidence in favor of the claim. Only effect sizes
the opposite direction are evidence against the claim. Meta-
analyses may show us that each additional experiment gives us
additional confidence in the true effect size being significantly
greater than zero, even if the constituent experiments did not
achieve significance.

Let us therefore take replication to mean measurement of
an effect in the same direction as the original. The probability
of this happening is given by the gray area under the replicate
sampling distribution to the right of 0, most easily found in a
table as the area from —-~ toz=kM/c ,withk=1/7 .

There is obviously a close relation between this area, which
I call the probability of replication p_, and traditional p values
based on the same equation with k=-1.As the effect size or the
number of observations varies, p and p __vary in complemen-
tary fashion, as is shown at the bottom oprigure 1.In particular,
whenever a p value has been calculated, one can immediately
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infer p by (a) calculating the z-score corresponding to 1 - p,
(b) dividing it by the square root of 2, and (c) finding the prob-
ability associated with this new z-score:p_ =N [N7(1-p) /N2 ];
thatis, p,.,= normsdist(normsinv( 7—p)/sqrt(5)), where normsdist is
the cumulative distribution function and normsinv is its inverse.
These may be found in the back of any statistics text, or issued as
commands in a spreadsheet such as Excel®.

Circular Files To rule out reporting results because they
don't achieve significance rules out the possibility of efficient
and unbiased cumulation of the results by a later reviewer. This
is known as the “file drawer problem’ although to some it is the
“circular file problem’ The new vehicle for inference, p,_, doesn't
force the misperception that failure to achieve significance is
tantamount to failure to replicate. It doesn't force us to trash
data that, aggregated with others, can have real value for the
community.

A Significant Difference Why bother with all this if p and
p,.,are kissing cousins? Because, viva la difference, kissing cous-
ins are not identical twins. One can never make a positive claim
with NHST (“Never use the unfortunate expression ‘accept the
null hypothesis™; Wilkinson & Task Force on Statistical Inference,
1999, p. 599); and, without priors, one can never make the nega-
tive claim of rejecting the Null. But P,., Permits positive claims,
such as:“My data will replicate approximately 70 [or 80, or 90]
percent of the time.” Values of p_greater than 0.9 correspond
to significant p-values. But even ifpyour Prep is (only) 0.8, that still
permits a positive and informative statement concerning the
replicability of your data; you are left with something better to
hold onto than the foul bag of Failure to Reject the Null.

Fear of the Unknown One of the tedious aspects of statis-
tics is remembering the details. Unless you teach statistics, your
ability to distinguish between Type | and Type Il Errors and give
a quick definition of the latter will be less than perfect. Feel guilt
no longer. Because P, is not predicated on the truth or falsity
of the Null, it does not incur either type of error. A large value
of Prep does suggest that the Null is false; but the utility of p__is
not predicated on the Null being true, as is the case for NHST.No
need to stay awake at night wondering whether to use Neyman
and Pearson’s critical regions or Fisher’s p values (Christensen,
2005).Use Py

Doesp,, really predict replicability? It provides an estimate
whose accuracy depends on the similarity of procedure and
subjects. It also depends, like any probabilistic event, on the luck
of the draw (Cumming, 2005). If variables are measured or be-
havior motivated differently, then “realization variance” must be
added to the sampling variance to predict the results. This is a
realistic random effects model of prediction (Killeen, 2005a). But
the burden of adding that realization variance belongs to the
replicator, who chooses how deviant the conditions will be, not
to the originator.

How likely is it that the original results were a fluke, and
will not replicate despite a large prep? Call a value of [ equal
to ps “strong” evidence. The probability that a replication will
provide strong support is 1 - NORMSDIST(NORMSINV(ps) -
NORMSINV(p )). The probability that it will strongly contradict

the original is 1 - NORMSDIST(NORMSINV(ps) + NORMSINV(p ).

rep

If we set ps = .8, and the original had a Prep of .9, then the prob-
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ability that a replication will provide strong support is 0.67; the
probability of strong contradiction is 0.02.

Feel Real Confidence Replicability analysis, like traditional
statistical analysis, is only half the story. Effect sizes are equally
important, and should always be reported. An optimal inferen-
tial procedure would integrate effect sizes with the probability
of replication, to achieve a true scientific decision theory. Pre-
senting effect sizes in terms of a confidence interval is less than
optimal, because confidence intervals are the alter-ego of NHST,
and inherit the same difficulties of interpretation.

Whereas NHST takes a null effect as a default and hedges
it with critical “significance” regions, Cls take the measured sta-
tistic as default and hedges it with limits. But a confidence in-
terval is the difference between the population parameter and
sample statistic, not territory on the x-axis. If the Null is true, the
Cl should be centered on 0; but if the statistic happens to equal
the population parameter, then Cl should be centered on that
statistic. But if you knew which was the case, why do statistics?
And if you don't know which is the case, you shouldn’t put it
anywhere (Estes, 1997).

“What to construct Cls around—and how to display them—
remain issues for debate” (Fidler, Thomason, Cumming, Finch and
Leeman, 2005, p. 495). They remain issues because their proper
explanation is convoluted:”If the experiment were repeated 100
times and 100 confidence intervals like yours computed, ap-
proximately 95 of them would contain the population mean”
Just what this means for your particular data is so difficult to un-
derstand that standard reference manuals either get it wrong
(e.g., Zwillinger, 1996, p.608) or make a strategic decision to mis-
represent it.

Life really can be much simpler. The familiar standard er-
ror bars are, mirabile dictu, replication intervals. Drawn flanking
the measured statistic, they can interpreted as the limits within
which replications will fall approximately half the time (Cum-
ming, 2005).

The First Chapter There’s a prequel to my story, one told
by Fisher about a test conducted with a hypothetical lady who
averred she could taste the difference when tea was poured
into milk, versus milk into tea. He used the story to introduce
permutation tests (as Salsburg, 2001, used it to name his charm-
ing history of statistics). Permutation tests are much better than
traditional statistics for analyzing most psychologists’ research
(Lunneborg, 2000), and can be used in concert with Prep (Killeen,
2005b).

The Last Chapter It will require some experimentation to
become comfortable with prep.The new statistic deserves its own
treatment, but in the interim you can simply translate a p-value
from any traditional testintoa p,ep,and interpretitas above.Once
you are comfortable with it, try using p,, in your classes. You'll
find fewer students like mine, brought to tears by t. How long
will it take journals to come around? | only have two data, both
positive. Given the small database, | conjured some subjective
priors by visiting an establishment of divination where bones
were thrown, palms read, and tea leaves swirled. There | met, of
all people, my old student! She bore no malice, but carried in-
stead a Tarot, t-tables, and a certificate in tasseography. Reading
my leaves, she predicted: “Eventually all editors will cease fum-
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bling with the knot, dispatch the null béte noire, and evaluate
manuscripts by their significance, effect size, and replicability.
But on that happy day, significance will mean what it means to
their mothers, not what it means to their statisticians.” Ahh ...
the pride we take in successful students!
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